Toryum, 1828`de Norveçli amatör mineralog Morten Thrane Esmark tarafından keşfedildi. Elemente adı, İsveçli kimyager Jöns Jacob Berzelius tarafından İskandinav gök gürültüsü tanrısı Thor`a atfen verildi. Toryumun radyoaktif olduğu ilk olarak 1898`de Alman kimyager Gerhard Carl Schmidt ve daha sonra o yıl bağımsız olarak Polonyalı-Fransız fizikçi Marie Curie tarafından gözlemlendi.
Toryum, “Th” sembolü ile gösterilen ve periyodik cetvelin 7. periyodunun aktinitler grubunda yer alan bir kimyasal elementtir. Toryum, nükleer reaktörlerde yakıt olarak değil, yakıt kaynağı (verimli malzeme) olarak kullanılabilir. Bu şekilde hafif su reaktörleri, ağır su reaktörleri, yüksek sıcaklıklı gaz reaktörleri, sodyum soğutmalı hızlı reaktörler ve erimiş tuz reaktörleri üretmek mümkündür.
Dünya çapındaki uranyum kaynaklarının sınırlı olduğuna yönelik olan ve 1960’larda yükselişe geçen endişeler, yakıt olarak toryumu kullanan reaktörlere olan ilgiyi doğurmuştur; çünkü ileride bir gün uranyum rezervleri tamamen tükendiğinde, toryumun verimli bir malzeme olarak uranyum üretmekte kullanılabileceği öngörülmüştür. Ne var ki sonradan yapılan çalışmalar, çoğu ülke için uranyumun nispeten bol olduğunu ortaya koydu ve bu nedenle toryum yakıt döngüsüyle ilgili araştırmalar giderek azaldı. 2000’li yıllardaysa daha verimli ve düşük atıklı nükleer reaktörler inşa etme hedefleri ve nükleer proliferasyonu (özellikle de nükleer silah üretimini) zorlaştırması gibi nitelikleri dolayısıyla toryuma olan ilgi yeniden artışa geçti.
Toryum, Türkiye de dahil birçok coğrafyada “mucize yakıt” olarak sunulmaktadır ancak bu tür konularda her zaman olduğu gibi, iş, o kadar tek taraflı değildir. Örneğin 2011 yılında MIT (Massachusetts Institute of Technology) tarafından yapılan bir çalışmada, toryum yakıt döngüsünün yaygınlaşmasını önleyici hiçbir faktör olmamasına rağmen, hafif su tasarımlı reaktörlerin yaygınlığı dolayısıyla toryum yakıtlı reaktörlerin pazar payının yakın veya orta vadede artması beklenmemektedir.
Bunun nedenlerinden biri, nükleer reaktörlerle atom bombaları arasındaki sıkı ilişkidir: Özellikle de nükleer santrallerin üretiminin erken evrelerinde amaç, enerji üretiminden çok, atom bombası üretimi konusunda sağladığı avantajlardı. Uranyum yakıtla çalışan santrallerde yan ürün olarak üretilen plütonyum, atom bombası üretiminde kullanılan çok önemli bir malzemedir ancak toryum yakıt döngüsünde plütonyum üretilmez. Toryum yakıt döngüsünü çok daha güvenilir kılan bu ilginç özellik, aynı zamanda toryum santrallerinin önündeki kritik bir engeldir. Hem enerji hem “savunma” sahalarına aynı anda yatırım yapmak mümkünken, sadece enerji amaçlı bir yatırım ekonomik olarak çekici değildir ve bu nedenle, yukarıda sözünü ettiğimiz analizin de gösterdiği üzere, hele ki giderek kutuplaşan dünyada toryum yakıt döngüsünden faydalanan reaktörlerin inşası (veya en azından yaygınlaşması) pek olası gözükmemektedir.
Ancak toryum reaktörlerinin önündeki asıl engel nükleer bomba tutkusundan ziyade ekonomik problemlerdir: Toryum, çok etkili bir nötron emici (bir nevi nötron zehirleyici) olduğu için, toryumdan faydalanan reaktörlerde daha da fazla zenginleştirilmiş uranyum kullanmak gerekmektedir. Bu kritik ekonomik problem, toryumdan faydalanan reaktörlerin pratik olarak var olamamasına sebep olmuştur.
Bir toryum reaktöründe toryum-232, bombardımana tutulduğu nötronları absorbe ederek uranyum-233 izotopuna dönüşür. Bu mekanizma, uranyum-238 atomlarının nötron emilimi yoluyla plütonyum-239’a dönüştürüldüğü mekanizma ile çok benzerdir. Reaktörün tasarımına bağlı olarak, üretilen uranyum-233 ya hemen üretildiği yere (in situ) tepkimeye girer ya da kimyasal olarak ayrıştırıldıktan sonra yakıta dönüştürülür.
Detaylar Madencilik Türkiye Dergisi’nin 116.sayısındadır.